首页> 外文OA文献 >Martensite in Steels : its Significance, Recent Developments and Trends
【2h】

Martensite in Steels : its Significance, Recent Developments and Trends

机译:钢材中的马氏体:其意义,最新发展和趋势

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Martensite is generally known as a hard but brittle microstructure. This is only true for high carbon plate martensite. Recently developed steels with a lath martensite microstructure offer an excellent toughness at yield strength of 1000 MPa yield strength. A transformation into lath martensite by glide as invariant shear mechanism is only possible at a carbon content below 0,03 %. The source of both high strength and good toughness is the high dislocation density and the narrow lath width off less than 1 µm. By a thermomechanical treatment, that leads to a finer lath structure both strength and ductility can be improved to a yield strength of 1150 MPa and an elongation of 18 %. As, unlike high carbon plate martensite, the hardness of lath martensite is not achieved by the distortion of the tetragonal cell by carbon atoms, the hardness of lath martensite remains stable up - during an annealing treatment up to 600°C. This thermal stability of the lath martensit microstructure makes an additional increase of hardness by the precipitation of different types of intermetallic phases possible. The increase of the hardness from 300 HV to 600 HV by precipitation without volume changes and good cold deformability reveals many new application in manufacturing. In plate martensite too, comparatively high toughness values can be achieved, if carbon is replaced by nitrogen. The refining influence of nitrides on the austenite grain sizes and the precipitation of fine nitrides during the annealing process leads to impact values three times higher than those of comparable high carbon plate martensite.
机译:马氏体通常被称为硬而脆的组织。这仅适用于高碳钢板马氏体。最近开发的具有板条马氏体微结构的钢在屈服强度为1000 MPa时具有出色的韧性。仅当碳含量低于0.03%时,才能通过滑移转变成板条马氏体作为不变的剪切机制。高强度和良好韧性的来源是高位错密度和窄板条宽度小于1 µm。通过热机械处理,可以使板条结构更好,强度和延展性都可以提高到1150 MPa的屈服强度和18%的伸长率。与高碳板状马氏体不同,板条状马氏体的硬度不能通过碳原子使四方晶格变形而获得,因此板条状马氏体的硬度在直至600℃的退火处理中均保持稳定。板条马氏体微结构的这种热稳定性通过可能沉淀不同类型的金属间相而使硬度进一步增加。通过沉淀而使硬度从300 HV增加到600 HV,而体积没有变化,并且具有良好的冷变形性,这揭示了制造中的许多新应用。如果用氮代替碳,在板状马氏体中也可以获得相对较高的韧性值。氮化物对奥氏体晶粒尺寸的细化影响和退火过程中细氮化物的析出导致的冲击值是可比的高碳板马氏体的三倍。

著录项

  • 作者

    Schulz-Beenken, A.;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号